Structure Reports

Online
ISSN 1600-5368

Diaquabis(4-hydroxy-5-nitropyridine-2-carboxylato- $\kappa^{2} N^{1}, O^{2}$)copper(II)

Fengjuan Shi, Jiguang Deng and Hongxing Dai*

Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
Correspondence e-mail: hxdai@bjut.edu.cn
Received 28 November 2011; accepted 8 December 2011
Key indicators: single-crystal X-ray study; $T=113 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.029 ; w R$ factor $=0.077$; data-to-parameter ratio $=12.3$.

In the title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{5}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, the $\mathrm{Cu}^{\mathrm{II}}$ ion, lying on an inversion center, is coordinated by two pyridine N atoms and two carboxylate O atoms from symmetry-related two 4-hydroxy-5-nitropyridine-2-carboxylate ligands, and two water molecules, forming a distorted octahedral geometry. In the crystal, $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the complex molecules. One of the H atoms of the water molecule is disordered over two sites of equal occupancy.

Related literature

For complexes based on the 4-hydroxylpyridine-2,6-dicarboxylic acid ligand, see: Zhao et al. (2006, 2009, 2011). For a similar reaction to the formation of the ligand, see: Xu et al. (2011).

Experimental

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{5}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \quad M_{r}=465.79$

Monoclinic, $P 2_{1} / n$
$a=6.5327$ (7) A
$b=9.7963$ (10) \AA
$c=12.2562(12) \AA$
$\beta=102.86(2)^{\circ}$
$V=764.68(15) \AA^{3}$

$Z=2$

Mo $K \alpha$ radiation
$\mu=1.52 \mathrm{~mm}^{-1}$
$T=113 \mathrm{~K}$
$0.20 \times 0.18 \times 0.10 \mathrm{~mm}$

Data collection

Rigaku Saturn 724 CCD
diffractometer
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) $T_{\text {min }}=0.752, T_{\text {max }}=0.863$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.077$
$S=1.04$
1829 reflections
149 parameters
6 restraints

9563 measured reflections
1829 independent reflections 1466 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.053$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.39 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.49 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 2^{\text {i }}$	0.79 (3)	1.79 (3)	2.544 (2)	160 (3)
$\mathrm{O} 6-\mathrm{H} 6 A \cdots \mathrm{O} 2^{\text {ii }}$	0.84 (1)	2.28 (2)	3.014 (2)	146 (3)
$\mathrm{O} 6-\mathrm{H} 6 B \cdots \mathrm{O}^{\text {iii }}$	0.85 (1)	2.00 (1)	2.836 (3)	170 (5)
$\mathrm{O} 6-\mathrm{H} 6 \mathrm{C} \cdots \mathrm{O}^{\text {iv }}$	0.85 (1)	2.49 (3)	3.109 (2)	130 (3)
Symmetry codes: $-x+1,-y+1,-z$		$-z+\frac{3}{2} ;$	$-x+\frac{1}{2},$	$+\frac{3}{2} ; \quad \text { (iii) }$

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the National High Technology Research and Development (863) Key Program of the Ministry of Science and Technology of China (No. 2009AA063201).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2493).

References

Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Xu, J., Su, W.-P. \& Hong, M.-C. (2011). CrystEngComm, 13, 3998-4004.
Zhao, X.-Q., Cui, P., Zhao, B., Shi, W. \& Cheng, P. (2011). Dalton Trans. 40, 805-819.
Zhao, B., Gao, H.-L., Chen, X.-Y., Cheng, P., Shi, W., Liao, D.-Z., Yan, S.-P. \& Jiang, Z.-H. (2006). Chem. Eur. J. 12, 149-158.
Zhao, X.-Q., Zhao, B., Wei, S. \& Cheng, P. (2009). Inorg. Chem. 40, 805-819.

supplementary materials

Acta Cryst. (2012). E68, m46 [doi:10.1107/S1600536811052949]

Diaquabis(4-hydroxy-5-nitropyridine-2-carboxylato- $\kappa^{2} N^{1}, O^{2}$)copper(II)

F. Shi, J. Deng and H. Dai

Comment

Carboxylate ligands play an important role in constructing novel metal-organic frameworks (MOFs) in coordination chemistry. Especially, a large number of MOFs based on pyridyl dicarboxylic acid ligands containing N - and O-donors with multi-connecting ability have been constructed. 4-Hydroxyl-pyridine-2,6-dicarboxylic acid has been widely used in the construction of high-dimensional structures with large pores. It usually adopts diverse coordination binding modes such as chelating to one metal center, bridging bidentate in syn-syn or syn-anti configuration to two or three metal centers. A systematic study of $3 \mathrm{~d}-4 \mathrm{f}, 4 \mathrm{~d}-4 \mathrm{f}$ and $3 \mathrm{~d}-4 \mathrm{~d}-4 \mathrm{f}$ complexes based on 4-hydroxyl-pyridine-2,6-dicarboxylic acid ligand has been undertaken (Zhao et al., 2006, 2009, 2011). However, to the best of our knowledge, no reports on the synthesis of the title compound have been seen in literature. In this paper, we report the synthesis and crystal structure of the title compound using a hydrothermal method with 4-hydroxyl-pyridine-2,6-dicarboxylic acid as ligand.

The title compound features a 3-nitro-4-hydroxyl-pyridine-6-carboxylate ligand, which was in situ generated by decarboxylation and nitration of 4-hydroxyl-pyridine-2,6-dicarboxylic acid under the hydrothermal conditions. A similar reaction has been reported (Xu et al., 2011). Structure analysis shows that the $\mathrm{Cu}^{\mathrm{II}}$ ion is centrosymmetrically coordinated by two N atoms $[\mathrm{Cu}-\mathrm{N}=1.9685(16) \AA]$ and two carboxylate O atoms $[\mathrm{Cu}-\mathrm{O}=1.9667$ (15) \AA] from two 3-nitro-4-hydroxyl-pyridine-6-carboxylate ligands and two water molecules $[\mathrm{Cu}-\mathrm{O}=2.479$ (2) \AA], forming a distorted octahedral geometry, as shown in Fig. 1. $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the complex molecules (Table 1).

Experimental

A mixture of 4-hydroxyl-pyridine-2,6-dicarboxylic acid ($366 \mathrm{mg}, 2.0 \mathrm{mmol}$), copper nitrate trihydrate ($242 \mathrm{mg}, 1.0 \mathrm{mmol}$), lanthanide nitrate hexahydrate $(\mathrm{Ln}=\mathrm{Eu}, \mathrm{Sm}, \mathrm{Pr}, \mathrm{Tb})(1.0 \mathrm{mmol})$ and deionized water $(10 \mathrm{ml})$ was placed in a 25 ml Teflonlined steel autoclave, which was kept at 433 K for 3 days. The resuling blue prismatic crystals suitable for X-ray diffraction experiment were collected after washing with deionized water and diethyl ether (yield: 43% based on the mass of copper nitrate trihydrate).

Refinement

H atoms bound to C atoms were positioned geometrically and refined as riding atoms, with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and with $U_{\text {iso }}(\mathrm{H})$ $=1.2 U_{\mathrm{eq}}(\mathrm{C}) . \mathrm{H}$ atoms bound to O atoms were located from a difference Fourier map and refined isotropically. One of H atoms of the water molecule is disordered over two sites with equal occupancy factors.

supplementary materials

Figures

Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. One of the disordered H atom sites on water molecule is not shown. [Symmetry code: (A) -x, 1-y, 1-z.]

Diaquabis(4-hydroxy-5-nitropyridine-2-carboxylato- $\kappa^{2} N^{1}, O^{2}$)copper(II)

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{5}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=465.79$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2yn
$a=6.5327$ (7) \AA
$b=9.7963$ (10) \AA
$c=12.2562(12) \AA$
$\beta=102.86(2)^{\circ}$
$V=764.68(15) \AA^{3}$
$Z=2$
$F(000)=470$
$D_{\mathrm{x}}=2.023 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3085 reflections
$\theta=2.1-27.9^{\circ}$
$\mu=1.52 \mathrm{~mm}^{-1}$
$T=113 \mathrm{~K}$
Prism, colorless
$0.20 \times 0.18 \times 0.10 \mathrm{~mm}$

Data collection

Rigaku Saturn 724 CCD diffractometer
Radiation source: rotating anode multilayer

Detector resolution: 14.22 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
$T_{\text {min }}=0.752, T_{\text {max }}=0.863$
9563 measured reflections

1829 independent reflections
1466 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.053$
$\theta_{\text {max }}=27.9^{\circ}, \theta_{\text {min }}=2.7^{\circ}$
$h=-8 \rightarrow 7$
$k=-12 \rightarrow 12$
$l=-15 \rightarrow 16$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.077$
$S=1.04$

1829 reflections

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.036 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$

149 parameters
6 restraints

$$
\begin{aligned}
& \Delta \rho_{\max }=0.39 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.49 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Special details

Experimental. Rigaku CrystalClear-SM Expert 2.0 r2
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$	Occ. (<1)
Cu1	0.0000	0.5000	0.5000	$0.01573(13)$	
O1	$0.0540(2)$	$0.53885(14)$	$0.66132(12)$	$0.0145(3)$	
O2	$0.1475(2)$	$0.70789(14)$	$0.78407(11)$	$0.0150(3)$	
O3	$0.3093(2)$	$1.08681(14)$	$0.52856(13)$	$0.0144(3)$	
H3	$0.331(5)$	$1.107(3)$	$0.592(2)$	$0.058(11)^{*}$	
O4	$0.2830(3)$	$1.07679(17)$	$0.31323(14)$	$0.0291(4)$	
O5	$0.0819(3)$	$0.9216(2)$	$0.22215(13)$	$0.0408(5)$	
O6	$0.3578(3)$	$0.40247(18)$	$0.52615(15)$	$0.0253(4)$	
H6A	$0.371(5)$	$0.381(3)$	$0.5936(10)$	$0.060(11)^{*}$	0.50
H6B	$0.454(7)$	$0.455(5)$	$0.516(3)$	$0.06(2)^{*}$	0.50
H6C	$0.348(10)$	$0.332(3)$	$0.484(3)$	$0.09(3)^{*}$	
N1	$0.1030(3)$	$0.68775(16)$	$0.49202(13)$	$0.0113(4)$	
C1	$0.1142(3)$	$0.6591(2)$	$0.68823(16)$	$0.0121(4)$	
C2	$0.1493(3)$	$0.7498(2)$	$0.59364(16)$	$0.0108(4)$	
C3	$0.2222(3)$	$0.8799(2)$	$0.61022(16)$	$0.0109(4)$	
H3A	0.2576	0.9169	0.6837	0.013^{*}	
C4	$0.2450(3)$	$0.9596(2)$	$0.51800(17)$	$0.0106(4)$	
C5	$0.1881(3)$	$0.8957(2)$	$0.41301(16)$	$0.0114(4)$	
C6	$0.1219(3)$	$0.7610(2)$	$0.40323(16)$	$0.0119(4)$	
H6	0.0891	0.7197	0.3313	0.014^{*}	
N2	$0.1874(3)$	$0.97025(17)$	$0.30795(15)$	$0.0150(4)$	

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	$0.0276(2)$	$0.00876(18)$	$0.0110(2)$	$-0.00692(15)$	$0.00460(15)$	$-0.00212(14)$
O1	$0.0212(8)$	$0.0095(7)$	$0.0123(8)$	$-0.0040(6)$	$0.0028(6)$	$0.0002(5)$
O2	$0.0251(8)$	$0.0103(7)$	$0.0088(7)$	$-0.0004(6)$	$0.0021(6)$	$-0.0006(6)$
O3	$0.0201(8)$	$0.0090(7)$	$0.0146(8)$	$-0.0040(6)$	$0.0052(7)$	$-0.0001(6)$

O4	$0.0442(11)$	$0.0199(9)$	$0.0253(9)$	$-0.0091(8)$	$0.0124(8)$	$0.0029(7)$
O5	$0.0523(13)$	$0.0497(12)$	$0.0151(9)$	$-0.0240(10)$	$-0.0036(9)$	$0.0070(8)$
O6	$0.0271(10)$	$0.0238(9)$	$0.0234(10)$	$-0.0057(8)$	$0.0019(8)$	$0.0029(8)$
N1	$0.0125(9)$	$0.0104(8)$	$0.0100(8)$	$-0.0010(7)$	$0.0004(7)$	$-0.0013(6)$
C1	$0.0107(10)$	$0.0107(10)$	$0.0149(11)$	$0.0005(8)$	$0.0027(8)$	$0.0031(8)$
C2	$0.0123(10)$	$0.0102(9)$	$0.0091(10)$	$0.0006(8)$	$0.0006(8)$	$0.0012(7)$
C3	$0.0109(10)$	$0.0116(10)$	$0.0093(10)$	$0.0000(8)$	$0.0007(8)$	$-0.0011(7)$
C4	$0.0077(9)$	$0.0100(9)$	$0.0145(10)$	$0.0007(7)$	$0.0030(8)$	$-0.0003(7)$
C5	$0.0104(10)$	$0.0139(10)$	$0.0105(10)$	$-0.0004(8)$	$0.0034(8)$	$0.0030(8)$
C6	$0.0117(11)$	$0.0149(10)$	$0.0099(10)$	$-0.0002(8)$	$0.0036(8)$	$-0.0028(8)$
N2	$0.0150(9)$	$0.0165(9)$	$0.0136(9)$	$-0.0015(7)$	$0.0033(8)$	$0.0011(7)$

Geometric parameters (\AA, ${ }^{\circ}$)
$\mathrm{Cu} 1-\mathrm{N} 1$
$\mathrm{Cu} 1-\mathrm{O} 1$
$\mathrm{Cu} 1-\mathrm{O} 6$
$\mathrm{O} 1-\mathrm{C} 1$
$\mathrm{O} 2-\mathrm{C} 1$
$\mathrm{O} 3-\mathrm{C} 4$
$\mathrm{O} 3-\mathrm{H} 3$
$\mathrm{O} 4-\mathrm{N} 2$
$\mathrm{O} 5-\mathrm{N} 2$
$\mathrm{O} 6-\mathrm{H} 6 \mathrm{~A}$
$\mathrm{O} 6-\mathrm{H} 6 \mathrm{~B}$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 1^{\mathrm{i}}$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{N} 1^{\mathrm{i}}$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 6$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 6^{\mathrm{i}}$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 6^{\mathrm{i}}$
$\mathrm{O} 6-\mathrm{Cu} 1-\mathrm{N} 1$
$\mathrm{O} 6-\mathrm{Cu} 1-\mathrm{O} 6^{\mathrm{i}}$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Cu} 1$
$\mathrm{C} 4-\mathrm{O} 3-\mathrm{H} 3$
$\mathrm{H} 6 \mathrm{~A}-\mathrm{O} 6-\mathrm{H} 6 \mathrm{~B}$
$\mathrm{H} 6 \mathrm{~A}-\mathrm{O} 6-\mathrm{H} 6 \mathrm{C}$
$\mathrm{H} 6 \mathrm{~B}-\mathrm{O} 6-\mathrm{H} 6 \mathrm{C}$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 2$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{Cu} 1$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{Cu} 1$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$
$\mathrm{~N} 1-\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{C} 1$
$\mathrm{~N} 1^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{C} 1$

O

$1.9685(16)$
$1.9667(15)$
$2.479(2)$
$1.263(2)$
$1.242(2)$
$1.312(2)$
$0.79(3)$
$1.211(2)$
$1.219(2)$
$0.84(1)$
$0.85(1)$
180.0
$83.24(6)$
$96.76(6)$
$96.76(6)$
$83.24(6)$
180.0
$89.52(6)$
$90.48(6)$
$87.50(7)$
$92.50(7)$
180.00
$114.76(13)$
$109(2)$
$112.7(17)$
$111.5(17)$
$111.2(17)$
$117.79(17)$
$129.69(14)$
$112.42(13)$
$125.79(19)$
$3.72(14)$
$-176.28(14)$

O6-H6C	0.85 (1)
N1-C6	1.332 (2)
N1-C2	1.358 (2)
C1-C2	1.518 (3)
C2-C3	1.360 (3)
C3-C4	1.409 (3)
C3-H3A	0.9500
C4-C5	1.405 (3)
C5-C6	1.385 (3)
C5-N2	1.480 (2)
C6-H6	0.9500
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	118.24 (17)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	115.97 (17)
N1-C2-C3	123.75 (18)
N1-C2-C1	113.45 (17)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	122.80 (18)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	119.73 (18)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.1
C4-C3-H3A	120.1
$\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 5$	121.85 (18)
O3-C4-C3	122.42 (18)
C5-C4-C3	115.70 (18)
C6-C5-C4	121.20 (18)
C6-C5-N2	117.04 (17)
C4-C5-N2	121.71 (17)
N1-C6-C5	121.74 (18)
N1-C6-H6	119.1
C5-C6-H6	119.1
O4-N2-O5	124.71 (18)
O4-N2-C5	118.54 (17)
O5-N2-C5	116.68 (17)
N1-C2-C3-C4	2.6 (3)
C1-C2-C3-C4	-178.09 (18)

sup-4

supplementary materials

$\mathrm{O} 1-\mathrm{Cu}-\mathrm{N} 1-\mathrm{C} 6$	$-178.60(18)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 3$	$178.19(18)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 6$	$1.40(18)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$0.1(3)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 2$	$-2.41(13)$	$\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$179.52(18)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 2$	$177.59(13)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-2.4(3)$
$\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	$176.32(16)$	$\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 2$	$-3.1(3)$
$\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$-4.1(2)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 2$	$175.00(17)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$-3.0(3)$	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	$0.5(3)$
$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$-179.66(16)$	$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	$176.56(14)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$177.69(16)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 1$	$2.1(3)$
$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$1.0(2)$	$\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 1$	$-175.38(17)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	$-178.33(17)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 2-\mathrm{O} 4-\mathrm{N} 24$	$-165.03(19)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{N} 2-\mathrm{O} 5$	$17.5(3)$	
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 2-\mathrm{O} 5$	$18.0(3)$	
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$2.3(3)$	$-159.5(2)$	

Symmetry codes: (i) $-x,-y+1,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}-\mathrm{H} 3 \cdots \mathrm{O} 2^{\mathrm{ii}}$	$0.79(3)$	$1.79(3)$	$2.544(2)$	$160(3)$
$\mathrm{O} 6-\mathrm{H} 6 \mathrm{~A} \cdots \mathrm{O} 2^{\mathrm{iii}}$	$0.84(1)$	$2.28(2)$	$3.014(2)$	$146(3)$
$\mathrm{O} 6-\mathrm{H} 6 \mathrm{~B} \cdots \mathrm{O}^{\mathrm{iv}}$	$0.85(1)$	$2.00(1)$	$2.836(3)$	$170(5)$
$\mathrm{O} 6-\mathrm{H} 6 \mathrm{C} \cdots \mathrm{O}^{\mathrm{v}}$	$0.85(1)$	$2.49(3)$	$3.109(2)$	$130(3)$

Symmetry codes: (ii) $-x+1 / 2, y+1 / 2,-z+3 / 2$; (iii) $-x+1 / 2, y-1 / 2,-z+3 / 2$; (iv) $-x+1,-y+1,-z+1$; (v) $x, y-1, z$.
supplementary materials

Fig. 1

